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Anti-p lane shear field s with discontinuous A e ~~ ion ror

deformation gradients near the tip of a crack

in f ini te elastostatics * J

L~~~~-
by

J .FZ. Knowles and Eli Ste rnbe rg .~~ ~~~~~~~~~~~~~

1)1st.. ~~~~~~~Califo rnia Institute of Technology

Summary

This pape r reconsiders the problem of dete rminin g the elasto static

field ne ar the ti p of a crack in an al l -around infinite body defo rmed by a

“~vIode III” loading at infinity to a state of anti-plane shear.  The problem

is tre ated fo r a class of incompr essible , homogeneous , isotropic elastic

materials  whose constitutive laws pe rmit a loss of elli pticity in the gove rn-

ing disp lacement equation of equilibrium at sulficiently seve re shearin g

strains .  The analysis represents a generalization of that reported in an

earlie r study and , as befo re , is carried out for the ~t small_ scale nonlinear

crac k problem ”, in wh ich a c r ack of finite length is replaced by a semi-

inf ini te one , and the nonlinear field far from the crack-t i p is matc hed to

the near field predicted by the linearized theory. The methods emp loyed

in the present pape r are necessarily largely qualitative , since they apply

to all materials in the class considered. The principal feature of the

resulting elastic field is the presence of two symmetrically located curves

issuing from the crack-tip and bearing disco ntinuit ies in displacement

* . . .  . .The results communicated in thi s pape r were obtained in the course of an
inve stigation suppo rted in part by Contract N00014-75-C-0196 with the
Office of Naval Research in Washin gton ,_D. C.
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gradient and stress.

Introduction

In a recent pape r [ i ]  we investigated the elastostatic field near

the tip of a crack under conditions of finite anti-p lane shear for a ve ry

special hypothetical incompressible — homogeneous and iso trop ic — elastic

material whose cons tit ut ive law permits a loss of ellipticity of the appropr iate

displacement equation of equilibrium at sufficiently severe deformations.

The problem treated in [1] involve s an all-aroun d infinite body containing

a plane crack of constant width and infinite length . At infinity the body is

subjec ted to a sta te of simple shear parallel to the edge s of the crack. The

• anal ysis reported in [ i ]  is carried out within the framework of finite elas-

ticity theory .

When the amoun t of shear applied at infinity is small , the field nea r

ei the r crack- t i p can be determined on the basis of an asymptotic scheme

in which the crack of finite width is rep laced by one of semi-infinite width ,

and the far field is required to match the el.asto static field near the crack-

tip predicted by the solution to the original pr oblem ac co rding to the linear

theory . It is thi s “small-scale nonlinear crack problem ” which is st udied

in detail in [1].

The particular material considered in [11 belongs to a special class

of incompressible elastic materials. A characterizing property of this class

is that each m aterial in it has a strain energy density that is completely 
4

determined by the shear stress re sponse in simple shear. The specific

member of this class used in the pilot example of [1] was chosen with two 4
requirements in mind: it was to allow for a potential loss of ellipticity ,

and it was to permit a fully explicit solution of the small-scale nonlinear

I
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crack problem described above.

The anti-plane shear field near the tip of a crack had been analyzed

earlie r in [a ] for a class of incompressible elastic materials which remain

e lli ptic regardless of the severity of the defo rmation. For such materials ,
L.

the elastostatic field is infinitely smooth in the interio r of the body, although

the displacement gradients as well as at least some of the stresses are

un bo unded at the crack-tip. In contrast , the example discussed i-n [1]

shows that a material capable of losing ellipticity will in general g ive rise

to a field near a crack-tip in which even the f irs t  derivative s of disp lacement

are no longe r continuous eve rywhere in the interior. In fact , the principal

distinguishing feature of the results in [1] is the appearance in the elasto-

static fie ld of two curve s, issuing from the crack-ti p, symmetrically

lo cated with respe ct to the crack-axis , and term inating in the interior of

• the body, across which stresses and displacement gradients suffe r jump

discontinuities.  Some of the local properties of such It elas tos tatic shocks ”

have been discussed elsewhere [3 , 4] .

In the present pape r , we treat the small-scale nonlinear crack

problem fo r a class of incompressible materials capable of losing ellipti city —

rathe r than for a single specific material . Although the analysis is based ,

as in [ 1], on a hodograph transformation, the emphasis here is on qualitative

results and, in contrast to the arguments used in [1], the methods em-

ployed do not depend on explicit solvability of the equations involved.

1. Special classes of incompressible elastic materials

A homogeneous, isotropic, incompressible elastic material is

characterized by a strain energy density (or elastic potential) W which is

in general a function of the first  two of the three fundamental scalar

t
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invariants I~ , I~ , 13 of the left (or right ) Cauchy-Green deformation tensor:

W = W ( I 1, 12). Since only locally volume-preserving defo rmations are

admissible for such materials , one always has 13= 1. In the undefo rmed

configuration , I~~ ~z ~; in any locally volume-preserving defo rmation ,

I i �3 and Ia �3.

The special class of incompressible materials with which we shall

be exclusively conce rned consists of those for which W is independent of

W W(1 1 ) , I~~�3 ; W ( 3 ) = O  . (1.1)

At infinitesimal deformations, the shear modulus for such a material is

g iven by

( 1. 2)

where the prime indicates d ifferentiation. One can show that the Bake r-

t Ericksen inequality reduces to

W’(11) > O  for I i >3 (1 .3)

fo r materials of this kind .

Suppo se that a body is composed of a material with the strain energy

density ( 1. 1), and assume that the region occup ied by the body in its un-

defo rmed state is a cube . Choose a rectangular cartesian coordinate frame

with its ori gin at one vertex of the cube and axe s collinear with three of

the ed ges. Consider the simple shear in which a particle with coo rdinate s

x1, x2, x3 in the undefo rmed state is carried to the point with coo rdinate s

y1,y2 ,y 3, whe re

~~~~~~~~~~~~~~~~ ~~~~~~: .  
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y1=x 1 ‘)~2~~~C
2 , 

y3=x 3+kx 2 ; ( 1.4)

the nonnegative constant k is the amount of shear. 1 In simple shear 2

the invariant I~ is given by

11= 3 + k 2 
, (1 .5)

and the shear stress 
~32

= 
~z3 is related to the amount of shear by

I

r 32 = r 23 =~~~~~~2kW’(3 + k 2) , k �o  . ( 1 . 6 )

The response curve in simple shear is the graph of T(k). From (1. 1),

(1.5) and (1.6) it is clear that W(11) is determined by ¶(k) according

to the formula

~/I - 3
W(I 1) = ~ ~r(k)dk I~ �3  . (1 .7)

The simplest case for which (1 .1)  hold s is that of the Neo-Hookean

material:

W(I ) =  ~ (I — 3 )  , (1 .8)
1 1

for which

¶ (k)~~ .Lk , k �O . (1.9 )

‘The deformation (1 .4) is of course locally volume-preserving.
2See Section 2 of [a] .
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A second example is furnished by the “power-law materials ” introduced in

[ 2];  here

W(I 1) = .~~~ E l + ~~(I 1~~3) l~~ 1~ , I i �3 , (1 .10)

where u , n , b are positive material constants. The response curve in

simple shear in this case is described by

k �0 . (1 .11)

Figure 1 illustr ates the response in shear for various values of the ‘harden-

ing paramete r ” n. A powe r-law material hardens or softens in shear ac-

co rding as n > 1  or n < 1 . The case n = 1  corresponds to the Neo-Hookean

material .

The special material considered in [ II  has a strain energy density

given by

~
(I i _ 3 )  , 3 �I~ �4 ,

W( 11) ( 1. 12)

_
~~~~+4A ( I 1

_ 3 ) h / 4  
, I~ �4

where ~.i is a positive constant. The corre sponding response in simple

shear is:

IMk , 0 �k � 1 ,

(1.13

L~k h12 k �1 .

— 
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Figure 2 displays the graph of (1. 13). Note that i’(k) suffers a jump

• discontinuity at the peak corresponding to k =  1 (or I~ =4) ~ and observe

as well that i (k)- . O as k-~x .

in the present pape r we shall be conce rned with a subclass of the

materials characte rized by (1 . 1). This subclass contains all materials

satisfyin g the following conditions:

(i) The strain energy density W satisfie s (1 . 1) ,  ( 1 .2 )  and (1 .3) ,

and the shear-stress response ¶ (k )  given by (1.6)  is three

times continuously differentiable for k � 0.

(ii) T ’(k) > O for 0 �k< 1 , 
¶ ‘( l ) O ,

(~~~j 4) 1

r ’(k)< O for k > l  , T ”( l ) < O  . J
(iii) — 1- (k) <k l - ’( k ) < T ( k) , k>0  . (1. 15)

(i v) As k— . o~ ,

T(k)~~~~ +hk~~~~ , (1 .16 )

where the constants ~~~~~~~ h and c are such that

h>0  , 0 < c < l  . (1.17)2

According to (i), we have T (k)~—~ k as k-.0. Condition (ii)

asserts that the response curve in simple shear rises monotonically to

‘Condition (i) and the first three of the four requirements in condition (ii)
automatically imply r ”(l)� 0. We exclude the possibility ¶ “( 1) = 0 only
for reasons of simplicity .
21t may be con.firmed that (1. 16), (1. 17) are consistent with (1. 15).

_________  
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a maximum 1 at k =  1, then declines to the limiting value We set

Tm_ T ( l )  ; (1 . 18)

evidently ~ is the maximum stress attained in simple shear.m
The right half of the double inequality in condition (i i i )  holds trivially

for k � 1 by condition (ii) ,  but for k< 1 it represents an additional restriction

and asserts that the “shear modulus” ¶ ( k ) / k  at an amount of shear k is a

decreasin g function of k. This imp lies that

0 �k � 1 , ( A . 1 9 )

which in t urn requi re s that

( 1 . 2 0 )

The left half of the inequality (1. 15) follows from (1 . 14) for  O < k ~ 1,

but not for k > 1.  It r equires  that k r ( k )  be increasin g and hence that

for k > l  . (1. 21)

Finally condition (iv) permits the limiting value of ~(k) as k-sw

to be either positive or zero and restr icts the rate of approach to this limit.

The power-law materials described by (1 .11)  satisfy conditions (i)-

(iv) provided 0<n<1/2, if one takes b =n/1 - 2n, so that the maximum in

the response curve is at k= 1. In this case one has T w = O  ~ h =~~(1 - ~~)
1_n

,

c =2n and ¶
m iL[2 (1 -n)/ (1 _ 2n)]n1~~ .

‘The location of the maximum at k= 1 is a matter of convenience only.

~ 
-t ~~~
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The material on which the example in [i ]  is based , althou gh broadly

similar to materials in the subclass described by conditions (i) - (iv) in

that its shear stress response curve ri ses to a peak at k =  1 and then declines,

doe s not in fac t belong to that subclass.  It fails to be smooth enough to

satisf y condition (i) ,  and violate s the stric t inequality on the right in condition

(ii i) for 0 <k < 1.

2. The small-scale nonlinear crack problem

Let ~ be the three -dimensional domain consistin g of the exterior

of a plane infinite s tr i p of width Zc.  Introduce cartesian coordinate s

x 1, x 2 , x3 in such a way that this s tr ip, which represen t s  a c rack , lie s

in the plan e x2=0, the x3 -a xis being parallel to the ed ges  of the crack

and the ori gin midway between the ed ges.  The c ross - sec t ion  £ of Q

in the plan e x3~ 0 is evidently the exterior of the segment -c � x 1� c of

the x 1- axis.

Suppose that the interior of a body of incompressible ma te r i a l

character ized by (1. 1) occup ies the domain ~ in an undefo rmed configurat ion .

and suppose fur the r that , in the absence of body force s , the solid is subjected

at infinity to a simp le shear paralle l to the ed ges of the crack.  The dis-

p lacement components u~ must  thus satisfy 2

u~~~o ( l )  , u3=k x 2+o( 1)  as x~x~~-.w , (2 .1)

where the nonnegative constant k is the amount of app lied shear. The

‘This is the loading case known as “Mode III” in the te rminology of f rac ture
me chanics.
2 Lati.n and Greek subscripts have the respective ranges (1, 2 , 3) and ( 1 , 2),
repeated subscripts are summ ed , and a subscript preceded by a comma
indicates differentiation with respect to the corresponding x-coordinate .

_ _ _— ‘—I--- ~~- -— - _______ —
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defo rmed faces of the crack are to remain free of tract ion .

For material s gove rned by the strain energy density (1 . 1), it is

shown in [a]  that the field equations and boundary conditions associated

with the crack p roblem described above are consistent with the assumption

L that u~~ 0 and u3 = u(x1, x2) on l~ , corresponding to a state of ant i -p lane

shear with ou t -o f -p lane d isp lacement u(x 1, x2 ) . Moreove r , the three-

dimensional boundary-va lue  problem is reducible , as shown in [ 2] ,  to the

following two-dimensional  problem for u on the c ross -sec t iona l  domain £:

[W ’(I 1 )u ] = 0  on £ , (2 . 2),~~~, o,

wit h

-, 2 2h i~~~
+ L u l  . l~t.~l = u ~~ u~~ (2 . 3 )

and

u(x1,x2)=kx 2+o(l) as x x — w  , (2 . 4 )

u 2 (x 1, 0±) = 0 for -c<x 1 <c . (2 . 5)

It is also shown in [ 2 ]  that the componen t s of t rue  st ress satisf y

¶
3~

_ 
~r~ 3 — 2W’(11)u ¶

33 = 2W ’(11) I~ u 1 2 ( 2 . 6 )

(2 .7)

with I~ g iven by (2 . 3) .

Whe n the B a k e r-E r i c k s e n  inequali ty hold s , as we assume here ,

/—fr
~~~~ 

.

- 
- / ~~~~~ 
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_ _ _  -_ _ -- -



-11-

it is possible to show that the differential equation (2. 2) is elliptic at a

solution u and at a point (x 1,x 2 ) if and only if

W’( 3 + k 2 ) + Zk 2W”( 3 + k 2 )>0  , k~~ lV u(x ,, x 2) I  . ( 2 . 8 )

I.-
In view of ( 1 . 6 ) ,  this condition for elli pticity is equivalent to the assertion

that the response curve in s imple shear must have positive slope at an

amount of shear equal to the m agnitude of the local disp lacement gradient

‘~u(x ,, x2 ) . It follows that ( 2 . 2 )  can neve r suffe r a loss of elli pticity if the

response function ¶ (k )  for  simple shear is monotone strictl y increasin g.

On the othe r hand , for the class of mater ia ls  satisfying conditions (i)  - (iv)

at the end of the preceding section , (2. 2) will lose elli pticity wheneve r

!V u(x 1, x 2 ) l  � 1. In par t icular , for the power-law mater ials  character ized

by (1. 10), (1 . 11), a loss of elli pticity is possible onl y if n< 1/2.

• In the presence of a potential loss of efli pticity , it is na tu ra l  to

seek the solution of the boundary-value problem (2 . 2) - (2 . 5) in a class

of funct ions whose smoothness is less than that whi ch one would othe rwise

naturally demand . In fact we shall merely require  that u be continuous

and have piecewise continuous f i rs t  and second partial derivatives on £ .

In addition u is to be bounded inside any circle centered at a crack-t i p.

Finally , the limits Vu(x 1 0±) must  exist and be continuous for  - c<x ~~<c .

The preceding smoothness requirements allow for the possibility

of finite jump discontinuitie s in ~ u — and hence also in the s t resses

across curve s in £. It is necessary to stipulate that across such a curve

I , W’(11) &u / an  shall be continuous ’, whe re I i is give n by ( 2 . 3 )  and

‘This is equivalent to the requirement that the tractions be continuous across
d , which in turn is demanded by equ ilibrium. See Section 1 of [ i ]  and
Section 3 of (3].

I -
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a u/ an is a de rivative of u normal to I.

For small value s of the amount of applied shear k , one would

expe ct that , away f rom the crack-ti ps , the solution of the foregoin g boundary-

value problem would be well-approximated by the solution of the corresponding

line a rized problem . 1 In fact , arguments sketched in [1] and [21 2 suggest

that , for small k, an approximation to the solution of (2. 2) - (2 . 5) which is

unifo rmly valid near the right crack-t ip is obtained by replacing the domain

£ with the domain £ exterior to the nonpositive x ,-axi s (see Fig. 3), re-

quirin g (2 . 2) to hold on £ , enforcing the free surface condition (2. 5) on

the semi-infinite crack -co<x 1<0 , x2 = 0  , and matching u and its f irst

deriva tive s at infinity to the corresponding near-field quantities calculated

from the exact solution of the original problem according to the linearized

theory . This le ad s to the small-scale nonlinear crack problem in which

one seeks a solution u of (2. 2 ) on 
‘

~~~ subject to the boundary conditions

u 2(x1,0*)~~0 x1<0 
(2.9)

and the matching conditions

1/2 . eu.—’k(2cr) sin -
~~

u 
~~~

‘-

~~ 

-kc(2cr)~~’”2 sin~~ . u 2.— kc(2cri~~
’2cos ~ (2. 10)

as r — c x  , -,i � 8 �rr

‘Upon linearization, the boundary-value problem (2. 2 ) - (2 . 5) passes ove r to
• the elementary problem for Laplace ’ s equation corresponding to irrotational

flow of an inviscid incompressible fluid past a flat plate at a 90° angle of
attack.
2 .See also Rice 15

f ~
-
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Here r, ~ are polar coordinate s at the crack-tip (Fig. 3), so that

x 1= r c o s 8 , x2=rsin G , r �0 , -rr~~ 8 �Tr . (2.11)

Furthe rmore , u is to satisfy relaxed regularity conditions strictly analogous

L to those imposed in connection with the orig inal crack problem .

When refer red to the dimensionless var iables

iE&=x~fck
2 

, ~F=r/ck
2 

, ii=u/ck2 , ( 2 . 1 2 )

the boundary -value problem (2.2), (2.9), (2. 10) assume s the followin g non-

dimensional form in which k does not appear explicitly:

~~~~~~~~~~~~~~~~~~ on £ (2 . 13) ’

x1<0 , 
(2 . 14)

2f)~~
I’Z sin~~ , 1

u 
~~ 

- (2 r )~~~~
2
sin ~ . u 2~~( 2rr ”2 cos ~ (2. 15)

as r-.w J
The foregoing small-scale nonlinear crack pr oblem was solved in

[a] for the limiting elliptic case n 1/2 of a power-law material gove rned

by (1. 10), (1. 11), (see Fig. 1), and in [i] for the ~aterial described by

• (1 . 12), (1. 13), (Fig. 2).

• ‘Subscri pts preceded by a comma are now understood to indicate partial
derivatives with respect to the dimensionless coordinate s 3E , and V stands
for the gradient operator with components a ia—s .

F ~~~
1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. An algo rithm for the construction of solutions to the displacement

equation of equilib rium.

A fo rmal algorithm for the construction of a solution to the small-

scale nonlinear crack problem (2. 13)- (2 .  15) can be generated with the help

L. of a hodograph transformation , in which the f i r s t  derivatives of U are

introduced as new inde pendent variable s , and one is led to an exp licitly

solvable linear bo undary-value problem in the hodograph plane for the

Legendre transfo rm of U . For materials which remain elli ptic at all

deformation s, the mapping between the physical and hodograph planes

is one-to -one , and the fo rmal procedure indeed produces an exact solution

which is infinite ly smooth on £ . This analysis  is carried out in detail

i~ [a]  for  the limiting elliptic case n = 1/2 of the p ower-law mater ia l

(1. 10).

In [ i i  the formal hodograph scheme is app lied to the boundary-value

prob lem ( 2 . 13)- (2 . 15) for the case of a material  defined throug h (1. 12 ) .

In this instance , a loss of ellipticity occurs and is accompanied by a break-

down in the inve r tibility of the hodograph t ransfo rmation . As shown in [ i i ,

even in these circumstance s the formal hodograph procedure can be used

to find solutions of the differential  equation (2 . 13) . These can in turn be

combined to construct a solution of relaxed smoothness to the boundary-

value problem.

We shall not repeat the descri ption of the hodograph transformation

he re; instead we merely cite from ( i i  the resulting formal al gorithm and

analyze it for incompressible materials gove rned ‘by (1. 1) and satisfy ing

conditions (1) - (iv) stated near the end of Section 1. Let ¶ (k)  be the

shear-stress response function for such a material , and define functions

I - f  ~ /
__________________________
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P and Q by

Q(p)  p’( )  , ~>0 , (3. 1)~
t ~ (t)

where

( 3 .2 )

According to the hodo graph scheme , the form al solution ~ of the bo undary-

value problem (2.  13)-(2.  15) is g iven implicitly by

~~~~~~~~~~~ 
-p Q(p)cos c~ , i > O  , -i’r �-e �~r , ( 3 . 3 )

• where for given 
~~~~~~ 

or ( F, 8) , p and c~ are to be dete rmined from

— — 2x 1= r c o s e = P ( p ) - Q ( ø ) c o s  cp

( 3 . 4 )

~2 =F s i n 9 = -Q(~ )sin cp cos~~ , p > O  , 0 �c~�,i

It can be shown that for an elliptic mater ia l , (3 .4 )  are unique ly

inve rtible : for each ~> 0 and each 8 in [- r r ,,r], the re a re unique value s

p =p ( ~~, 9) ,  p = c ~(F, 8) with p > 0  and 0� CD �n such that (3 .4 )  hold . Substitu-

tion of the se value s of p ,  cp into (3.3)  furnishe s the solution U

For the materials of inte rest here , ( 3.4) will in general fail to be

uniquely invertible for certain value s of (~~ , 3E2 ). The f i rs t  step in con-

structin g a solution to the small-scale nonlinear crack problem (2. 13) -(2.  15)

‘Note that (1. 16) assure s the convergence of the integral in the definition P. 

- r ’ ~
-
~~~ 

— - - -
~ 

- - ---— - -
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consists in dete rmining the num ber of roots (P ,~p) of (3 .4 )  for each value

of

A geometrical version of thi s issue is arrived at by observing that

• ( 3 .4 )  may be written in the equivalent alte rnative fo rm

~ 1=~~cos 8 = a ( p ) - b ( p ) cos2~

~ 2~~~ sin 9 = -b ( p ) s i n 2cp , (3 .5)

0 � cp �rr , p > 0
-p

where

a ( c ) = P ( p ) - -~ Q(c ) , b ( r ) = - ~ Q(p )  . ( 3 . 6 )

From ( 3 . 1 ) , ( 3 . 2 ) ,  (1.6) and (1.3) it follows that b(r)>0 for p > 0  , so

that ( 3 . 5 )  rep resents , for eac h fixe d ç - > O  , the para metric equations of

a circle F(~ ) centered at ~ 1= a ( c)  , 3~~= 0 with radius b(p ) .  The car tes ian

equa tion fo r this ci r cle is

r ( p ) :  [~~1- a ( p ) J 2+~~~ = b 2 (~’) . ( 3 . 7 )

Thus for  given values of and x2, (3.4) has a solution ~~~~~~ with

if and only if the circle r (p~) passes throug h the

point (3E~,~~~). Moreover if (p~, cp~.) and ~~~~~~~ satisfy (3.4) for given

• (x 1, x2 ) , then ~~~~~~~ . Thus the number of admissible roots (p .,cp~.)

of (3.4) coincides with the number of circle s r ( p )  which pass through the

given point ~~~~~ or , equivalently, with the number of roots p . . of

(3 .7) .  

—•-—- —— - — - - -—‘~
- - - -

~ - -i’ ;.•-
~ 7~~~r-•— —  -

_________________ —

- 

• 
- -



-17-

Let &~. be a subd omain of £ on which p ,~. is a twice continuously

differentiable positive f unction of ~~~~~ satisfy ing ( 3 .7 ) .  Note that for

such a p
~~

,

a(p~.) 
- b ( p , ) � 5~1� a(p~ ) + b ( p ,.) , (3.8)

since the left and rig ht members of these inequalitie s are the abscissas

of the intercepts of r (p~) with the ~ 1-axis. Define ~~~~ . through

r — -11/2Ia ( )~~ 
+ b (p)~~ -x 1co sc~~= ..s gn~~2[ Zb(pJ J , 0 �r p ..�ir . ( 3 . 9 )

One shows easily that c~~, cp~. sa t isf y (3 . 4) on £~ . Further , if cç~.. is

twice continuously diffe rentiable on £ •.. , the function U defined on &. by

U(x 1, x2 ) =  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (3.  10)

can be shown by dire ct calculation to be a solu tion of the partial d i f ferent ia l

eq u ation ( 2 . 13) on £-.,.

In the next section we invest igate the roots ô . . of ( 3 . 7 )  and their

domains of definition £ ,. .

4. Geometry of the circles T’ (p )

In orde r to investigate the roots p of (3. 7), we need some pr ope rt ies

of the functions a(p) and b (p) which, according to (3.7), determine the

• circle s F(p).

• From the definitions (3.6) and (3. 1) it follows that

‘sgn~~2 is one jf x2>0 , zero if 
~~~~ 

and minus one if

1~~ - 

~~~~~~~~~~~~~~ 
-
~~~
‘
~~~~~~~~~

I 

,__ - - -  

- 
~~~~~~~~~~~~ ~

- It
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a ( p ) =  I - , , p > 0  , (4 .1 )  
•

t ~(t) 2p T ( p )  2p~r ( p )

a’(p)= , b’(~ ) =  - , ~ >0 , (4. 2)
~ ( p )  2p T (~~)

and hence in pa r t i cu la r  that

p > 0  . (4 .3 )
p~~ (p )

Invoking (1. 15), one finds f rom (4 .2 )  that

a ’(~ ) < 0  , b’( o ) < O  , p > 0  , (4 .4)

while (4 .3 ) ,  (1. 14) lead to

1>0 , 0 <p < l  ,
a’( p )  - b

’( p ) ~~~~ = 0  , p = 1 , ( 4 . 5 )

p > l

We shall also require the asumptotic properties of a ( p )  , b( p )  for

la rge and small p .  The asymptotics for large k of ¶ ( k )  given by (1. 16) .

(1. 17) lead via (4. 1) to the following estimate s for a ( p ) ,  b( c ) :

If ¶ >0: as o — ~~

~~L 1  ~~~ he 1a ( O )  
2I ~ 

- 

Zr 2 ( 2 - e)  2 -  €

(4 . 6)

b _~~. L ! ..~~&h~_ 1
Z r  p 2 2 - c2i pa,

- — ———— - - - 
- ——— —

___ -



-19-

Lf i = 0 :  as c — ~~a)

~~~~~~~~~~~~~~~ 
, b( p) ~~~~~~~~ . ( 4 . 7 )

From (1.6), (1.2), (3.2) one finds the behavior of ~(k) for small

k to be given by

~(kY~~k-dk
3 as k— 0

~
- (4 .8 )

d = - 2W ”(3) /~.x . J
R uling ou t a degeneracy , we sha ll assume

d > 0  . (4 9)
1

Using (4. 8), (4.9) in (4. 1) lead s to

a(p)— . -dlog~ , b(p)-~—~-~ as ~— 0+ . (4.10)

From (4. 6), (4.7) it may be noted that in eithe r of the cases T > 0

or ~ =0 , one has
a,

- 
a ( p ) — 0 , b(p)-.O as ~— n  , (4.11)

while from (4. 10) it follows that

b (p)—+~~ as p— 0+ . (4 .12 )

On the othe r hand , (4. 10) also shows that

‘The fact that d~ 0 is a consequence of (1 . 15).

~~~~ 

•

• - -- •
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a ( p ) - b ( p ) — - ~~ as p-.O+ . (4. 13) S

From (4.4), (4. 12) and (4.11) one infers that a ( p )  and b(p)  decrease

monotonically from +oo at o = 0+ to zero at ~ = +cn . In par t i cu la r , both

functions are positive for 0 < p < w .

Accordin g to (4. l3~, (4 .5 )  and (4. 11), a ( :)  - b(c )  increases  mono -

tonically from - ~~ at p = 0+ to a maximum at ~ = 1 and then decreases

steadily to zero at p = +~~ (Fi g. 4). Since the maximum value of a( o )  - b(c)

is necessar i ly positive , one has

a( 1) - b ( 1) > 0  . (4. 14)

Finally it is clear that there is a uni que number suc h th at 0< c 0 < 1 and

a(p 0) - b(c~~) = 0 . (4 . 15)

The circle s F ( p )  of (3.7) are centered at 3Z1 =a (~ ) 
, ~E 2 = O  , have

radius b(~ ) and intersect the ~ 1- axis at ~ 1= a ( ~ ) - b ( c )  and at

As c’ increases  fro m zero to one , the center and ri ght

~ 1-inter cept  of F( r~) more from 
~ l = +~~ to the left , while the left

~ 1-intercept  move s to the r ight .  By (4. 15), the left intercept of F (r 0 )

is at the ori gin . The circle r ( 1) ,  which pla ys a major role in the analys is

to fo llow , is centered at 3E 1= a ( 1) , 3~~= 0  , has radius b ( l )~~ 1/ 2T m , and

inte rsects the ~ 1 -axis at positive values of iE~ .

As p continue s to increase from un ity , the cente r and rig ht

• ~ 1-intercept continue to move to the left , and the radius continue s to

dec rease , but the left intercept ~ 1= a(c- ) - b ( p )  now move s to the left as

we ll (Fig. 5). For very large values of p , r (p)  is centered very sli ghtly

- 

~

______ — -~~ --
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to the ri ght of the origin and has a small rad ius.

Two circle s F( p )  correspondin g to value s of ~ both of which are

less than one do not intersect , but this is not necessar i ly  the case when

both values of p are greate r than one . It is thu s not su rp r i s ing  to find

that the s ubfa mily of ci rcles r ( p)  for which p � 1 possesses an enve lope .

This envelope , which is of de cisive importance in the stud y of the roots

c of (3. 7),  is a curve which is tangent at each of its points to one of the

circles F ( p )  , ~~� 1. To find thi s curve analytically, we f i r s t  de fine
I

F (p ;~~1,~~2 ) = [ 3 E 1- a ( p ) j 2+~~~ - b 2 (p) , p >O , -co < i < ~~ . (4 . 16)

The envelope then consists  of those points (~~~, 5E2 ) for  which there is a

~ >O such that

F(p ;~~1,~~2 ) = 0  and ~~~~
;
~~j ,~~~) = 0  . (4 .17 )

Substitution from (4. 16) into (4. 17) leads directly to parametr ic  equations

for the envelope ~~:

1/2

~~: ~~~
= e ± [e 2 (p )  J , ~ 

� 1 • (4 . 18)

where the functions e 1( c )  , e 2 (~ ) a re defined for  all p > 0  by 1

‘Although only the value s of e 1(p) , e 2 ( c )  for p � 1 enter into the parametric
equations for ~ , their values for O < p < l  will be needed later.

• 
• 

-~ - 
, ~ 

~d~ - ‘~ -
- • ~~~~~~~ ~I - •/~~~~~

•
~~~~~~~,~4
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— 
a(p~ a’( o) - b(p )b ’(c )

e 1(~ ) —  a ’(p) ‘ 
S

(4. 19)
2

e ( )  = 
b (

~~ 2 [a ’(p ) - b’( o ) J [a ’(p) +b ’(p) ] , O <p < O D
[a’(c)]

Only those c i rc les  F(~ ) for which o ~ 1 partici pate in the fo rmation of the

enve lope because , by (4 .4 ) ,  (4. 5), e 2(p) � 0 for  ~ � 1 but e 2 ( p ) <0 for

O<~~< 1.  Thus as g iven in (4. 18) is real only for p � 1.

The envelope ~ is symmetric about the ~ 1-a xis , consistin g of an

uppe r and a lowe r branch as indicated by the sign alte rnative in (4. 18).

From (4 .4 ) ,  (4. 5), (4. 19) and (4.14) one find s that e 1
(cD)>0 for p � 1

so tha t I lies in the half-plane ’ ~~~~~ Moreover, e 1
(l)=a(l)-b(1) and

e 2( 1 ) = 0  so that each branch of I “be gins ’ when ~ = 1 at the left

~ 1- intercept of r (1 ) .  A more detailed inspection of e 1(p )  , e 2 (~~) near

p = 1 shows that I has a ver t ica l  tangent  at p = 1 a nd its radius  of curva-

ture  there is b ( l ) .  Thus I osculate s with ~(l) at the left ~ 1 - intercept

of this circle .

As o-’ +~~ , the two points on I which correspond to ~ tend to

the ori g in , as one sees easil y from the asymptotic behavior of e 1(p )  and

e 2( c )  for large p deducible from (4 . 6) or (4. 7), according as Ta,> O  or

0. In fact , it can be shown that the uppe r and lower branche s of I

app roach the ori gin with vertical tangents as p — ~~ , provided ~
r
co >O .

If Ta,= 0 , the uppe r and lower branches of I are asymptotically tan gen t

• as c-. + co to the line s 3E2 = *~~ c ( l  - e Y 1” 2
~~1 , whe re , according to

( 1. 16), c is the materi al paramete r controlling the rate of de scent of the

shear-stress response curve at large amounts of shear.

‘The ori gin (which would “correspond” to p =
~~~

) is take n to be a point of I .

• • - • • J~~c-. •~~• •~~., 

f P a~lç Ci~. t
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From (4. 19) one find s that •

• e~~(p )=a
’(p)c(p) , e~ (p)=2b(o)b

’( p )c( p ) , p > 0  , (4 .20 )

where

(b ”~~ bb’a” bb”c = 1 -  — , - . (4.~~1)( a )  ( a )

By (4.18), (4.20), the slope d~ 2/d~~1 of I therefore satisfie s

= 
b( o ) b ’()~~ >0 for eve ry p such that c(p)~ 0 . (4. 22 )

Thus on the upper (lower) branch of I , is a monotone strictly increasing

(decreasing)  funct ion of on any arc of I which includes onl y points for

which c(~ )
~~ 0. At value s of p for which c(~ ) 0 , 1 has a cusp.

By ( 4 . 2 1 ) ,  ( 4 . 1 ) ,  ( 4 . 5 ) ,  ( 4 . 3 ) ,  (1 .18 )  and ( 3 . 2 ) ,  one has

c( 1)  = 
b( l )  

~~ 

[a”(1) — b”( l ) J  = ~~~~~~~~~~~~~~~ , (4. 22)
[b ’( l ) ]  Tm

so that by the last of ( 1 . 14),

c ( l ) <0  . ( 4 . 2 3 )

It then follows that c ( p ) c z 0 when p is near unity, and hence , by (4. 18),

(4 .20) ,  (4.4),  
~~ 

at f i rs t  increases along I as p increases from p = 1.

But as o , the corresponding points on I tend to the ori g in , and thus

is ult imately decreasing.  One concludes that c( p)  must change sign

a t least once for 1<p < a , .  If the material is such that for all p > 0

only one such change of si gn occurs , then there is a unique n umbe r P c > 1

- _______ ________

- 1 ,-i -
• I • - • .• - - • •

~ 
~~~ • ‘ )~~~~~~~~
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such that

c (p ) < O , O < p <  ; c(p )=O ; c(~ ) > 0  , p > p ~ . (4. 24) 1

When (4.24) holds , one may infe r from (4. 20) that e
1
(P) and e

2
(p)

increase monotoriically with for O<C<D
c 

attain maximum values at

= , and thereafte r decrease monotonically with c. The asymptotic

behav ior of e 1
( p )  , e2(p) , which can be determined from (4.6) or (4.7),

(4. 10) and (4.19), is such that e1
( c )  and e2(c) both tend to -~~~~~~ as

—0+ , and both tend to zero as p -.+~~~~. The zero of e,(p) lies between

~ 
and 0 = 1. The graphs of e

1
( p )  and e2

(0) are thus as sketched in

Fig. 6.

In the analysis to follow , it will be assumed that the material under

consideration satisfies the “one - cusp  condi t ion ” (4. 24). At the end of

this section, we shall discuss the inte rpretation of this condition in terms

of the shear-stress response curve of the material. In the final section ,

we shall comment briefly on the effect of relaxing the restriction (4. 24).

Suppose (4 . 24) hoi~ s , and let D(p)�0 be the distance from the

cente r of the circle F(1) to the points on I corresponding to p. A

dire ct calculat ion g ives

D(o)D’( o )  = a’(p)[a(p) — a(1)]c(~ ) 
, p � 1 , (4. 25)

so that D’(p)<O for l (p<p , D’(P )=O , and D’(o)>O for p>p . Thus

as p increases from o = I , the corresponding point on, say , the upper

‘The asymptotic behavior of c(o ) as —0+ guarantees that c(p)<0 for
o near zero .

2
Hence , each branch of I has only one cusp.

I / ? T

- —
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branch of I move s closer to the cente r of ~ ( 1)  until it reache s the cusp,

whe re D ( p )  has a minimum. 1 The point then move s away from the cusp —

which lies inside I ’( l )  — in such a way as to increase its distance from the

center of r ( l ) ,  eventually c ross ing  F( 1)  and approaching the ori gin.

By a s imilar  argument , one can show that all points of I except

the or i gin lie in the in te r io r  of the circle  r( p 0 ) through the ori gin .

When (4. 24) hold s , it can be shown that there are no points o.f

inflection on those portions of the uppe r or lowe r branche s of I for which

1 � < c  , but the remaining part of each branch has at leas t  one point of

inflection. It is also possible to prove that there are no double points on

when the one-cusp condition holds.

A qua l i t a t ive  sketch of I is shown in Fig.7 for ¶
a)>O (Cas e A~

as well as for i = 0  (Case B).
a)

One can show that the envelope I. is precisely the set of points

• x 19 x2 ) at which the Jacobian determinant  of the phys i ca l  coordinate s wi th

respe ct to the hodograph coordinate s vanishes. It is therefore analogous

to a “limit line ” in gas dynamics.  2

We have not found a sat isfactory in terpre ta t ion of the one-cusp

condition (4.24). One can show that c(p) vanishe s at p = C >l if and

only if the curve representing the square of the she a r st ress ¶ in simp le

shear as a function of the square of the amount of shear p has a point of

inflection at p = p . The presence of more than one cusp on each branch

of the envelope I would the refo re correspond to “terracing ” in the

‘One can show that I is tangent to r ( p )  at the cusps.
2See ~105 of [6].

-- — — -
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declining portion of the latter curve (c>1).

It can be verified that the power-law materials (1. 10), (1. 11) for

0<n<1/2 satisfy the one-cusp condition (4.24).

5. Elliptic and hyperbolic solutions of the di f ferent ia l  equation
L

We turn now to the question of the number of roots o > 0  of (3.  7) ,

or equivalently , of the numbe r of positive zeros of F in (4. 16) as a

funct ion of c-

First , suppc~•se that 3~~=~~~= 0  , and observe from (4. 16) that

F( p ;0,0)=[a(o)+b(o)Jfa(p)-b(p)J , p > 0  . (5 . 1 )

Since a ( p ) + b ( p ) > 0  for p > 0  and a ( p ) - b ( p )  vanishe s only at p
0 

(see

(4. 15)) ,  it follows that the only zero of F(p;0,0) is

Next , assume that ~~~+~~~>0. From (4.11), (4. 16), one sees that

F(+ ~~~~~~ ;~~~~~1, ~~~~~
2

) =~~~~+~~~ >0 , ( 5 . 2 )

while (4. 10) , (4. 16) y ield

F(0+;~~1,~~2) = - w  . ( 5 . 3 )

Thus for  any g iven (~~1 5E2
) , the re is at least one positive zero o of

F(o ;~~~~~1,~~~~~
2

) . Note that this result  doe s not depend on the one-cusp condition

(4. 24).

In order to investigate the numbe r of ze ros of F , it is convenient to

r ecord fi r st some proper t ies  of this function.  From (4. 16), (4. l9~ one

obtains

— — • —- • T — - — —

/ ~~~~~~~~~
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0> 0  , 
~~~~~~O!’ 

( 5 .4)

Thus by (4 .4) ,  the graph of F vs. ~ for g iven 
~~~~~~ 

has a hori zontal

tangent when p is such that ~ 1= e 1( 0 ) .  One sees from Fig.6,which depend s

on (4. 24),  that when � 0 , there is precisely one such horizontal tangent —

located at a value of p between zero and one . If O<~~1<e 1( o )  , two

horizontal  tan gents occur at , say, p =5 ~ 
, =

~~~ 
with 

~ 1 < P c
<
~~2 

. Whe n

~ ~
> 1 , both 

~ 
and 

~2 cor respond to points on I which are intersections

of I with the vert ical  line throug h the point 
~~~~~~~~~~~~~~~~~~ 

When 
~ l < ~ , only

re fe r s  to a point on I. with this property . 1 If i~ = e 1(o~~) , there is a

hor izonta l  tangent  in the graph of F only at ~ = , and if ~~~~~~ , the re

are no horizontal  tangents.

Equations (5. 4),  (4. 16) and (4. 19) show that , at a horizontal  tan gent

of F ,

— — a F A _ .  —F(p;x1,x2) x 2 -e 2(P) , -~~-(p;x 1, x2)=O . (5 . 5)

From the grap h of e 2 ( P )  in Fig. 6 , it is clear that e2 ( P ) < O  if p<  1 , so

• that F(~~;~~1, 5i2 ) > 0  at a horizontal  tangent for  which ~ < l .  If ~~� 1 in

(5. 5), then F(~ ;~~1,~~2
) is pos itive , zero or ne gative according as the point

(~~, l~~I ) lie s above , at or below that point on the upper branch of the

• envelope I which corre sponds to ~~~. The latte r point is a point of inte r-

section of I with the vertical line through (x 1, x2 ) .

From (4. 16) we observe that F(1;~~1,~~2 ) is positive , zero or neg ative

acco rdin g as lie s out side , on o r in side the circle r (1) .  Note that

1Recall that I contain s no points correspondin g to value s of p’( l (see (4. 18)).

.~~~~
•- - 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
—— -  • -— -_ _ _
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for each fixed p and 
~~

, F(p;~~1,~E2 ) is a monotone increasing function

of 5E
2 

for

The preceding considerations lead to the following conclusion s

conce rnin g the de pendence of the n umbe r and location of the ze ro s of F

L on the point 
~~~~~~~~

Table 1

Numbe r of Numbe r of
Location of zeros of F in (0 , 1) zeros of F in ( 1 , a))

outside I , outside F ( l )  1 0

out s ide I , inside r ( l )  0 1
inside £ • outside I ’( l )  1 2

inside I , inside ~ ( 1)  0 3

One observes in particular that, at any poi nt 
~~~~~~ 

which lies outside I,

there is a uni que zero of F , while at any point 
~~~~~~ 

in the interior of

I , there are three distinct zeros.

If , a t a given value (~~~,3~°~) of ~~1, x2) , is a zero of F , the
implicit function theorem assures the existence of a function

defined and smooth in a neighborhood of (5~~~~,~~~
0

z
),  such that

- 

~~~~~~~~~~~~~~~~~~~ =0 in this neighborhood , unless 3F/ap vanishes at

Thus diffe rentiability of p ,~, can break down at ~~~~~~~~ only

if 
~~~~~~ 

coincide s with the point on the envelope I that corresponds to

c . Since the re are no points on I corresponding to value s of p <  1 • no such

breakdown in smoothness can occur if ~< l .

We now define two function s p 1 , p 2 on the (~~1,~~2)-p lane as follows:

p 1(~~1,~~2)= the  smallest zero of F(p ;~ 1,~~2) , (5 .6)

,. , • : —..---
~~~
. -. 

~~~~~ 
-
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p 2 (x 1, x2) = the lar gest zero of F(p ;~~1,~~2 ) . (5 .7 )

Since F has only one zero for points (~~1, x2 ) which lie strictly outside

I, one has °1=° 2 in the exterior of I. From (5. 1), (4.15) one has

~ 1
(0 ,0)= p 2

(0 ,0)= p
0 

; p
1 

is continuous at the orig in , but is not. In

fact, one has c z(~ i, 0)_o o 
as 5E~ —0- , while p

2(~ 1, 0)—+a) as

Also, 0 1= ° 2=0 c ~ coincides with either cusp, and 
~~

are continuous at the cusps. One can show that p
1 suffers jump discon-

tinuitie s at all points on that arc of the envelope I which joins the cusps

by way of the left ~ 1 -inte rcept of ~
( 1) , except for the cusps themselves.

Except for points on this arc of I, p
1 is three times continuously differ-

entiable. On the othe r han d , o~ ha s jump discontinuities at all points

of that branch of I whi ch joins the cusps via the origin , the cusps ex-

cluded , and 02 has continuous third derivative s elsewhere . Both p
1 , p 2

are even functions of 
~ 2 

for each 
~~l 

S

One infers from the foregoing discussion that

outside both I and I’(l) ,

( 5 . 8 )

p
1=o 2>l outside I but inside F(l) , J

0 1>1 , p
2>l inside both I and ~ ( 1) 

‘ 1
(5 9)

p
0<p 1<1 p~~>l inside I but outside ~(l) , J

and

PO<P 1 <P c 
p 2>p inside I . (5. 10)

I - - -— _ _ _ _

_________________ 
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As 
~~~~~ 

for fixe d , one shows easily from (5.6), (5.7) and (4. 16)

that o i (~ i, 0) and p
2(~~11

0) satisfy

a(p
1(~~1, 0))-b(p 1~~ 1,0))=~~1 

for -a)<~~1
�a(1)-b(1) , ]

(5.11)

for a(1)-b(l)<~~1
<a) , J

a(p 2 (~~1, 0))- b(p
2(~ 1, 0))  = fo r ~co<~~ � 0 , ]

(5.12)

for  0<~~1<a) . J
Bearing (3.9), (3. 10) and the second of ( 3 . 6 )  in mind , we now define

functions u 1 (x 1, x2 ) u
2~~1,~~2) for all (~ 1, x2

) by

1/2

(5 . 13) 1

3 = 1 ,2 , no sum . J
Note that u

1=u 2 on the exterior of the envelope £ . From ( 5 . 1 1 ) ,  (5. 12),

(5. 13) one sees that

1~0 for -a)<~~1~
Ca (1)-b(l)

(5. 14)

= 0  for a ( 1) - b ( 1 )< ~~1<a)

where

‘Since b( p )>0  , the fact that 5E1 lies between the 5E
1
-intercepts of r(p0,)

assures that the radical in (5. 13) is real.

• • . - • •~~~~~~~~~~~~~ • —-~~~~~~~~~ - - — ~~~~~~~ -••- • - - • —~~~~~~~—_— •—- -- • •
U •~~ç 

~~~~~~~~~~~~~- / ~~~ • 
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1#0 for

( 5 .15)

for

- Thus is continuous at points on the ~ 1 -axis to the right of the left

~ 1- in tercept  of F ( 1)  but d iscont inuous  across  the crack  i~~�0

as well as across  the seg~rnent 0 �~Z 1� a ( 1) - b ( 1)  of the ~ 1-axis ahead

of the crack. In contrast, U2 is discontin uous across  the crack but

remain s continuous at all points of the ~ 1 -axis 
ahe ad of the crack-tip.

These observation s , togethe r with the r emarks  following ( 5 . 7 )  conce rnin g

the loci of points of d iscont inui ty  of and 0 2 , pe rmit  the dete rmination

of the maxima! domains  of smoothness for and a2 . Let consis t

of the set of all points in the domain £ which lie neithe r on the line

segment 0<~~~~ a ( l )  - b ( l )  , x 2 -0  nor on that a r c  of the envelope I which

jo ins  the two cusps by way of the point ~ 1=a ( l)  - b ( l )  , 
~ 2 = 0 .  Similarl y,

let be the set of those points in £ which do not lie on that arc of £

which join s the two cusps via the ori gin. Then is three times con-

t inuously dif ferent iable  on . Moreove r , one can show by d i rec t  cal-

culation based on (5. 13) , (4. 16) (and the fact  that p
1 

, 0 2 are zeros  of

F) that satisfies the different ia l  equation (2 . 13) on I~ . In the process

of carry ing out thi s calculation, one find s that

) + b ( p  ) -~~ . . J/2
u~~~1~~~~sgn 2p

0
1 

~~~( p )  
on (5. 16) 

- 
I

1It ts understood that the cusps themselves do not belong eithe r to or
to LI Z .

_ _ _ _ _ _ _  _ _ _  •
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1~ 1 _ a ( P )+b (P~) 11/2
U~ 2 ~~ ~ 

2b(p~~) j °‘~ ‘ 
( 5 .  17)

and hence that

~7U J = c  on . (5. 18)
I ~~

In view of ( 5 . 8 ) ,  ( 5 . 9 )  and (5 .18) ,  one concludes that the d i f fe ren tia l

equation (2. 13) is elli ptic at the solution U 1 at those points of which lie

outside ~ ( 1) and hyperbolic in that part of which lie s inside F ( 1 ) .  Simi-

larly,  (2 . 13) is elli ptic at the solution U 2 at those points of which lie

outside both I and ~( 1) (~1~ and U 1 in fact  coincide there ) ,  but hyperbol ic

at any point of which l ies eithe r in the inter io r of ~ ( 1)  or in the interior

of I .

One ha s p
1
(i~~,~~2) =o 2(5E1,~~2) outsid e I and as F -.0

their common value tends to zero . In fact, from (4. 10) , (4. 16), (5.6) and

(5.7) it follows that

p 1 1 , X
2

) 2~~ 1, x 2 ) 2 / 2~~~ h / 2  as ~~~~~~ , (5. 19)

and hence fro m (4. 10), (5. 13) and (5. 19) that

u 1f~ 1, x2 ) -u 2 (x 1, x2 ) (2~F) 1 “2 sin~~ as . (5. 20)

Thus and U2 satis fy the condition at infinity (2. 15) posed as a pa rt of •

the small-scale nonlinear crack problem.

From (5. 17) with ~ = 1 , one obtain s

— 
-:?

~
4*
~~

.
I.4 ~~~ 

— — —

..•~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~4

-
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2b(p 1(~~1, 0))  j . (5 .21 )

But according to the f i r s t  of (5. 11), the numerator  in the bracket  in (5.  21)

vanishes for ~ 1 <a(l)-b(1) , so that

-a)<x
1
<a(1)-b(1) . ( 5 . 2 2 )

Thus , in pa r t i cu l a r , U
1 

sa t i s f ies  the free surface condition (2 . 14) along the

crack 1 - c o<x1 <0  , x 2~~0.

Neithe r U 1 nor U2 alone can serve as a solution of the small-scale

nonlinear crack problem , since neither is smooth enoug h throug hout ~

In the next section we shall show how they can be pieced togethe r to construct

the desired solution .

It may be remarked that a thi rd solution ti3 of (2 . 13) d i f f e r i n g  f rom

tij and U 2 only at points inside I , could be constructed with the hel p of

that zero of F which , for inside I , lie s between 0
1 

and

We shall not need this solution in what follows , and so we do not invest igate

its fea tures  here .

6. Solution of the small-scale nonlinear crack problem.

He re we construct  a continuous , piecewise smooth solution U of the

boundary-value problem (2 . 13)-(2 . 15); ~ will coincide with U~ on a subset

of ~ and with U2 on the remainder of ~ . We f i r s t  observe that , because

• of the discontinuities in and U~ , U will be required to coincide with ti 1
at those points of ~ which lie near that branch of I which joins the cusps

‘The solution also has vanishing no rmal derivative at 
~~~

= 0± for

- 
_ _ _ _ _ _  

I 

/
_ _  ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-_ _
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by way of the origin , while U and U
2 

will coincide near the remaining

branch of I , as well  as in the v ic in ity  of the segment  0<~~1< a ( l ) -  b( 1)

of the ~~1- axis. Thi s sugges t s  that we attempt to “match” and

across  two as yet  undete rmined curves iand 1 ( F i g . 8)  that are sym-

metr ica l ly s i tuated wi th  respe ct to the ~~1- axi s , s tar t  at the o r ig in , te rmi-

nate at the cusps , and othe rwise lie wholly within the inte rior of I . Thi s

matching must  a s su re  the continuity of ti and of the tract ion across  the

two curves  to be fo und . We shall show that there are unique “ shocks ”
I

and I with the des i red  prope r t ies .  As eithe r of these curve s is traversed ,

U and its tangent ia l  der iva t ive  remain cont inuous , while the normal deriva-

tive of U j umps — desp ite the p reva i li ng  cont inui ty  of t ract ion across

and ~~~~.

Momentarily taking for granted the existence of I and d , let

stand for  the set  of those points in ~ which lies strictl y outside the

closed curve formed by It 1 and that b ranch  of which connects  the

cusps by way of the point ~ 1
=a(I )- b (1) , ~~2 0 (Fi g. 8) ,  while ~~~~~ 4)  consis ts

of the in te r io r  of this closed curve ( 7 ~~~ is shaded in Fig. 8). Define U on

L by f i r s t  sett ing

—u 1 on ~

(6. 1)

U 2 on 7;.(2)

- • and then extending the defini t ion of U to all points of It  d (except the

or ig in) and the ri ght branch of I by continuity . It is clear from (5. 20)

that U sat isf ies  the condition (2 . 15) at infinity and f rom (5. 22) that it

- —*

~~~~~.‘ I -
-
~~~~~~~~~~~~~~~

•
~~

“.-- •~~‘I - f .  • ~~~~~~~~~~~~~ ~~
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also sat isf ies  the boundary condition (2 . 14) on the crack faces .  Finally,

U is smooth and sat isf ies  the diffe rential  equation (2.  13) on ~~~

‘ except at

points of d + and d~ We shall ultimately show that U remain s bounded

as F — a

It therefore remains only to establish the existence of curve s

and d with the required prope rt ies.  We consider d +only; the existence

of d the n follows f rom symmetry .

Suppose for the moment that there is such a curve it and let

(x 1, x 2 ) be a point on i t .  Since d~~lies on or inside I , one has from (5 .  10)

that

O < o 1(~~1,~~2
) � p , 

~~~~~~~~~~~~~~~ ~~1,~~2 ) E d ~ (6. 2)

Since U as g iven by (6.  1), (5 .  13) is to be continuous at on I’,

it follows that

on d~~ , ( 6 . 3 )

where we have set

b~ = b(o~~) , a = a ( p ~~) , o = 1 , 2 . ( 6 . 4 )

Since c i ~~ 
are zeros  of 

~~~~~~~~~~~ 
one has from (4. 16) that

- 
(~ 1-a 1)

2+~~~~b~ , ~~1-a 2)
2+~~~~b~ on (6.5)

If we define g by

g ( p ) = p 2b(p ) ( a ( p ) + b ( p ) 1  , p>0 , (6.6)

• - J~~,$•,• ~

•, 

.. / ~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _  
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the re sult of squar ing  both sides of ( 6 . 3 )  and solving for 
~~ 

may be ex-

pressed as 1

g
2

- g
1 +

X
1

= 2 2 on I , ( 6 . 7 )

where

g
3

= g(p
3

) , 1, 2 . (6 .  8)

Using ( 6 . 7)  in the f i r s t  of ( 6 . 5 )  y ield s

• 

= b ~~~~~~~~~

[

~~~~~~~~~~~~~~~~~~~~~~
i

2 ~ a
1] 

on d~~ . ( 6 . 9 )

• Substi tution from (6 . 7), ( 6 . 9)  into the second of (6. 5) then lead s afte r some

al gebra to the conclusion that the value s of 0 1 and 0 2 on the shock mus t

be related by

on , ( 6 . 1 0 )

where 4 is defined for all 0 1 >0 , p
2

> 0  by

( 6 . 1 1 )

( recall (6 .4 ) ) .

The issue of establishing the existence of the solution (6. 1) of the

1Since we are interested only in p 1>0 , Q
~~>0 , ( 6 . 7 )  is equivalent  to ( 6 . 3 )

and le ads to no extraneous results .

• • ~— -
/ • •

~, •4~~i.ç 
- -/ ~ /

/
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small-scale nonlinear c rack  problem is a matte r of the revers ib i l ity  of

the argument  leading to (6. 10), ( 6 . 1 1 ) .  We shall es tabl ish  below the

followin g six claims:

(i)  for eve ry o
~ 

E ( p 0 ,p ] , there is a unique root
of (6. 10);

( i i )  settin g c 2 =~~2 (p 1) in (6.  7) , ( 6 . 9 )  s upplies a parametr ic  rep-
resen ta t ion  of a curve it with t rac ing  paramete r 0

( i i i )  as c~ -.p 0+ , the corres ponding point on it approache s the
or i gin , while as 0~~ —

~~~
- , the associated point on move s

to the uppe r cusp;
(iv) except for its end points , it lie s in the inte rio r of I ;
( v )  ( 6 . 3 )  hold s on it (exce pt at the origin ) , so that U as defined

by (6 . 1) is continuous except at the ori g in;

(vi) the t rac t ion is cont inuous across  it (except at the ori g in) .

In order  to analyze the shock equat ion (6. 10), we r e q u i r e  a fu r the r

property of b(~~) as we ll as some results  pe r t a in ing  to the func t ion  g ( c )

defined in ( 6 . 6 ) .  From ( 4 . 1 ) ,  (4 . 2) and ( 4 . 4)  one f inds  that

[o 2b ( p ) ] ’ = -p 2a ’(p )>O , p > 0  , (6. 12)

so that z 2b ( p )  is an increas ing  function of o . Since by (4. 10),

p 2b ( p ) - . 1/ 2  as p -.0+ , it follows that

• ( 6 .  13)

The asymptotic behavior of g(p ) can be dete rmined from (4. 10),

(4 . 6) or (4 .7) ,  and (6 .6)  as

as p- . 0+ , (6 .14)
4p

• ‘ • ‘~~~~~~ - 4 _~~~~~~~-~ - -  -

I- 

~~~
/

~~~~~~~~~~~~~
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and

g(~ ) — ~ 2 as ~~— + a )  if ¶ >0 , ( 6 . 1 5 )
ZT

a)

while

2

~ 
~ Z ( l  ~~ as p — + ~~~ if = 0  . (6 . 16)

Z h €  
a)

The mate r ia l  constants  , h and c f i r s t  appe a red in (1 . 16);  note that

0 < c < 1

From ( 6 . 6 ) ,  (6. 12) and the f i r s t  of (4. 19) it fur the r follows that

g’( p ) =  - c 2a’(c- )e 1( : )  , o > 0  . (6 .17)

A c c o r d i n g  to ( 6 . 6 ) ,  (6. 14), (6. 17), ( 4 . 4 )  and the grap h of e 1 ( . )  in Fi~~.6 ,

g ( p )  mus t  decrease  f rom -F co at = 0+ to a posi t ive  minimum at that

value of p at which e 1(~- )  vanishe s, thereafte r inc reas ing  ste adily with

p . Accord ing  to (6 . 15), (6.  16) g r i s e s  to a f in i t e  limit as p — +OD if

~ >0 , but tend s to + x  as p- . +a) if T = 0

If r >0 , there is a unique number p >0 such that
CX) CX)

2
g(p~~ ) g(+ a)) U

2 
(6 . 18)

a)

With the help of a cclculation too long to be included here , it is possibl e to

show that

p a) 0 0 , (6 . 19)

I 
- /

_ _ _ _ _ _
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p 0 be ing the zero of a (p )  - b(~ ) (see (4. 15)). Thus

2
g (p ) < g ( a) ) 

~ 2 for p � if . (6. 20)

a)

U
A sketch of the graph of g ( c )  is shown in Fig. 9.

We now tu rn to the function ~ (c 
~

, p 2 ) introduced in (6 . 11), f rom

which it is immcdiately noted that

~~p 1,p 1) = 0 , ~(p 2 ,p 1) = - ~ (p 1,p 2 ) . (6 .21 )

We are inte rested in the behavior of ~(p 1,p 2 ) as a function of ~~~,

0 <p 2<co , whe n is held fi xed at a value not less than p 0 . A strai ght-

forward calculation based on (6. 11), (6. 12) and the f i r s t  of (4. 19) furnishe s

the identity

b2
.~~— ( p 1,p 2 ) = a ~~[’i(p 1,p 2 ) — 4 ( p 1,P 2 ) 1 

‘ 
c i >0  , P 2 >O , (6 . 22)

with V g iven by

V( p 1, ~~~ 
= ( b

2
p~~~~ - b 1o~~)e 1(p 2 ) + g 1- g 2 , p

1 >O , p 2 >0 , (6. 23)

where g 1~= g(p~~) , g is de fined by (6 .6 ) ,  e 1( p )  is g iven in (4 .1 9) , and we

have set a~ = a’(p 2 ) . From (6. 23), (6. 22), and (6. 21) it follows in particular

that

, p 1>0 , (6. 24)

and

—-- 

l,~~
-
tq 

~~~~~~~
• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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p 1>0 . (6. 25)

Differentiating (6 . 23), (6 .2 2 )  with respect to 0 2 , setting 0
2

C
1 

, and

making use of (6. 12), (6. 17), (4. 20) yield s

L
_—4 .(p11o 1) 0  , p

1
>0 . (6.26)

ap 2

Finally, a f ur ther differentiation give s

2 , 3-p 1(a 1)
b c1 , (6.27)

~2 I

whe re a’
1= a ’(0 1

) , c 1= c ( p 1) , and the function c is defined in (4. 21) .  In

view of the one-cusp  condition (4. 24), (6. 27) and (4.4)  fu rn i sh

1<0 0 <P 1<~~c

= 0  , p
~~

=p
~~ 

(6. 28)

Making use of (6 .21) ,  (6 .2 5) ,  (6. 26), (6. 28) and the appropriate Tay lor

approximation for 4 (p 
~ 

c 2 ) , one can thus dete rmine the local behavior

of ~(p 1,p 2 ) as a function of p 2 near the zero p 2 = p 1

decreases  with p 2 at p
~~

= p
~ 

if O < p 1<p

~ (6 . 29)
increases with p 2 at ~ ~~~~~~ J

From (6.23) ,  one finds that

~~—r •~~;~~ 3~~’~~~ • 
- •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-41-

aV (p 1,p 2 ) 2
ap 2 

=(b2
p 2-b 1

p 1)a~c1 , p
1

>O , p 2>0 , (6 .30)

where c2 = c(p 2 ) and c~p~ is given by (4 .2 1) .  Invokin g the one-cusp condition

(4 .24) ,  one sees that the graph o f  V (p 1,p 2) v s  p 2 
has ho rizontal tangents

only at p 2= p 1 and 
~2 =

~~c Differentiation of (6 .30)  with respe ct to p 2

g ive s, at p 2 = p 1

p 1>0 , (6.31)

so that , by (4. 24) ,

1>0 , O < P l <P c

p l = p c 
( 6 . 3 2 )

Next we consider the asymptotic behavior of 4(p 
~
. p 2 ) and V ( p  1’ p 2 )

as p 2
-.+a) and as p 2 -’O+ for fixed p 1

�p 0 . It follows easily from

(4 .6)  or (4 .7 )  and (6 . 11), (6 .23) ,  (4. 19), (6 .6 ) , (6. 18) that as p 2
-.a)

one has

for ¶ >0: -

a)

~~p 1,p 2 ) —
~ 2~~~(a1— b1)p2>0 if p 1 >p 0 , (6. 33)

(6 .34)

if , (6. 35)

-I 
•
~~~~~

•

‘ • • 

• _ _ _ _ _ _ _ _ _ _ _
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for 7 = 0 :
a)

~
, p 2 ) —~~~(a1— b1)p~~~

>0 if p 1>p 0 , (6 .36)

2
- 

~ 
~ Z ( 1 - e )

<~ (6 .37 )
Zh c

- p~~~~~~~<0  if p 1>O . (6 .38)
Zh ( 2 - € )

On the othe r hand , the small-p 2 behavior of 4 and V can be deduced

with the help of (4. 10): as p
2
-.O+

4 (p  1,p 2 ) — —-1~.(b 1p~ — -~)>0  , p
1

>O , ( 6 . 3 9 )
2p 2

V ( p 1,p 2 ) 1 
4 (b 1p~ .~~>0 , p 1>O • (6.40)

2dp
2

We shall now make use of all of the fo re going prope rties of ~ and

V in o rder  to descr ibe  the graphs of V (p 1,p 2 ) and 4 ( p 1,p 2 ) as funct ions

of p 2 , 0 <p 2 <cx , with p 1 fixe d , p 0 �p
1~~ p . Suppose f irst  p~~<p~~<P~

From (6 .40)  one sees that V (p 1,p 2 ) decreases from +a) at p 2=O+ until

it reache s its ze ro at p 2 =p 1 (see (6. 24)),  at which point it has a horizontal

tangent, according to (6 .30) .  As p 2 increases from p 1 , V (p1,p 2)

increases, reaching a maximum at p = p~ , the reafte r declining steadily .

If T a) >O , ‘y(p 1, p 2
) approaches a finite negative limit as p 2

-. +a) , by

• 

• (6 .35) .  11 ¶ a) = O  , (6 .38)  shows that ‘Y(p 1,p 2 )-. -co as p 2
-’+a) . The

graph of Y (p 1,p 2 ) vs . p 2 for p O <~~~< D ~ 
is shown as the dashed curve

IJ~ ~~~
:-

I / ~~~~ f ‘

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--
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in Fig. 10.

• Accordin g to (6 .22) ,  the graph of 4 (p 1,p 2 ) v s .  p 2 can have a

horizontal tangen t only whe re it crosses the graph of V(p 1 ,p 2 ) vs. p 2. By

(6.39), (6.22), 4 (p 1,p 2 ) decreases from +w at p 2=O+ , remaining less

than ‘1(p 1,p 2~ unt il it vanishes, together with ‘Y (p 1,p 2
) , at

where there is a horizontal tangent (see (6. 25)) .  By the f i rs t  of (6. 29) ,

is negative and , by (6.22), continues to decrease as p
2 increases

from p
1 until its graph crosses that of Y(p 1,p 2) with a horizontal tangent.

As p
2 continues to increase , $(p 

~ 
p
2) then increases monotonically to

+w (see (6.33) or (6.36)), crossing the p
2- axis once and only once at

The graph of 4(p1,p 2) vs. p 2 for P0
<p

1 <P is shown as

the solid curve in Fig. 10.

For p
1=p 0 

or p
1
=p , it is easily shown that 4 ( p 1,p

2
) vanishes

if and only if p =p , whether ‘ >0 or r =0 .

Thus for p
0
<p

1
� 
~~ 

, there is a unique root p 2~~~2 (p 1) � o of

(6. 10), whethe r 7 > 0  or ¶a)=O , and claim (i) is established. A detailed

stud y of the behavior of ~ 2 (p 1) shows that ~2 (p 1 ) decreases monotonically

as p 1 increases, and that

as 
~~~~~~ ‘ 

1

(6 .41)
p z (p i~~~

p
~

+ as p
~~~

p
~~

- . J
In fact , the asymptotic behavior of ~~2 (p 

~ 
as 

~ 1 can be shown to be

g iven by

- -‘  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -------  • - J

~~~~~~~~~~~~~~~~~~~~~~ •
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• ~ 2 (p i~ ~o [~~~~~‘(P 0~~] 
(p 1-p 0 ) ’ if ¶ > 0  . (6 .42)

• He re p 0 < l  is the unique zero of a ( p ) - b ( p ) (see (4 . 15)) ,  7( k) is the

shear stress ’ in simple shear at an amount of shear k , and is the

ultimate stress in simple she ar.

If r~~ = O  , (6 .42 )  must be rep laced by

1
r 2 1~I P 0~ 

(p 0)i I

~~ ~ ) L ehT ’(P 0 )j  ~ l ~~ c 
~ 1 ‘~ o~ ~~~~~ 0 ; (6. 43)

here h , c are the material constants introduced in (1. 16), ( 1. 17).

If one sets p,=~~2
(p

1
) in (6 .7) ,  then is given as a function of

p 1 for p 0 <p 
~

� P C . In order to show that the same substitution in (6 .9 )

furnishe s x2 as a function of 
~ 1 , it is f i rs t  necessary to establish that

the right side of (6.9)—with p 2=~~2(p 1)— is positive . Let

2 / g 2 - g 1Z(p 1,p 2 ) b 1 -( 2 2 
- a 1) ~ 1>0 , p 2 >O . (6 .44)

\b2P 2
_ b

1P 1 /

If p 1, 
~2 

satisfy (6. 10) with 4 g iven by (6 .11) ,  it is possible to show that

2 2b1b p p 2Z(p1,p 2)= b 2 b 22 (a1-a2+ b 1 -b 2)(a1-a 2-b 1+b 2) . (6.45)

~ 2p 2 1p 1)

When p 2>p 1 , one has by (4.4) that a1-a2+b 1-b 2>0 , so that the sign of

‘Note that ¶ (k )  is the dimensional shear stress (as distinguishe d from ~ (k)
which is nondimensional).

- • 
•I
)~~~~~~~~

- •
~~~~4 -. / . ~
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Z(p 1,p 2
) is the same as that of a1-a 2-b 1+ b 2 , provided (6.10) ho ds. To

de termine the latte r sign , we f i rs t  use (6.11), (6 .6 ) ,  and (4. 19) in ( 6 . 2 3 )

to show that , if p 1,p 2 satisfy (6. 10), the n

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (6.46)

But according to Fig. 10 , V ( p 1,~~2 (p 1) ) < 0  . Moreove r a~ <0 by (4. 4) ,

a’ -b ~ <0  ~f ~~~~~~~~~~~~~~~~ 
by (4 .5), and b2p~~- b 1p~~>0 if p 2 >p 1

by (6. 12). Whe n these facts are used in (6 . 46), one conclude s that

a 1-a 2 -b 1+ b 2 > 0 when p 2 =~~2 (p 1) , and hence that Z(p 13~~2 (p 1))> 0

P 0 < O i �2 c It then follows that the right side of(6.9)is positive when p
2=~~2

(p
l ),

and hence (6. 7) , (6. 9) with 
~~~~~~~~ ~ ~ ~~ 

s upp ly pa rame t r i c  equa t ions

o f a  curve for 3E2>0  (or 1 if 
~ z< 0 ) , t huse s t abl i sh ing  claim ( i i ) .

Equation (6. 41) shows that ~2(p i~ 
— +a) as p — , and thus by

(4.6) or (4. 7), (6. 15) or (6. 16), and (6. 7), it follows that —0+ on it
as 

~
‘ 1 

-.p 0+ . A similar argument, making use of (4. 15) as well, shows

that x2—0+ on it as

On the othe r hand , as p
~~

’p
~~

- , (6 .41)  asser ts  that 
~ 2 (p 1) p c+

(6 .17) ,  (6 .12 ) ,  (4 .19) ,  ( 6 . 7 )  and L’Hosp itaP s rule then show that

x 1 — e 1( p )  on it . It then follows from (6. ,, and (4. 19) that

on it as 
~~~~~~~~ 

Thus 
~~~~~~ 

in ~~ approache s the uppe r cusp

4 of ~ as p 1 ~~ , and claim (iii) is confirmed.

Suppose that (5E1,~~2) is an interior point of it corre sponding to

p
0

<p
1
<
~~ 

. Then (6.10), (6,11), (6.7), (6.9) and (4.16) imply that

p 1 and ~ 2 (p 
i~ 

are both zeros of F(p;~~1,~~2) , so that ~~~~~~ 
is a point

at which F has more then one zero, By Table 1 of the preceding section,

• • - - n~t
••~~ 

-• -

~~ 

• - - •-

/

_ _ _ _ _ _ _ _ _
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cannot lie out side ~~~. If (~ 1
,x2) were on 

ac., then p 
~ 

and

~~~ l~ 
would both be double zeros of F (see (4. 17)) , which is easily

shown not to be the case . Thus 
~~~~~~ 

lies inside ~~, as asserted in

claim (iv).

It can be shown dire ctly that (6. 10), (6. 11), and (6.7)— with

i � — imply ( 6 . 3 ) ,  and hence by (6. 1), (5. 13), U is

contin uous at all points of it except the origin . This establishe s claim (v ) .

To ve rif y that the traction is continuous across the shock , it is nec-

e s s a ry f i rs t  to de te rmine the slope of it . If one se t s p 2~~~2 (p i~ 
in (6. 10)

and then differentiates with respect to p 1. one can dete rmine ~~ (p ~) in

terms of p
1 

p
2=~~2

(p 
~ 

with the help of the appropriate prope rtie s of a(p )

b( p ) and 4 (p 1,p 2 ) . To find the slope of it , it is then only nece ssary to

d iffe ren tiate (6. 7) and ( 6 . 9 )  (with p 2 =~~2 (p ~ ) )  with respec t to p 1 and sub-

stitute for ~~(p 1) the value dete rmined as o utlined above . The resulting

fo rmula for the slope can be s implified by usin g (6. 10), (6. 11) to eliminate

p 1,p 2 where they appear explicitly . The final form for the slope is then

found to be

- 

b 1 -b 2 1(a i 2+b 1+b 2) z _ a i +b i + b 2)1 
1/2

m_
d - 

b1+b2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~

°~ ‘ ‘ ~ 0 <
~~1<

~~c • (6 .47)

We note in passing that the monotonicity properties of a(p) , b(p ) and

p 2b(p ) es tablished in (4.4),  (6. 12) pe rmit one to conclude that the slope

_ _ _ _ _- -

•
•

~~~~~~~~~ ~~~~~
•• •

•
~

•: -  - f~~~- -!t~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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of it is posit ive at each of its interior points. 1

• The vector N with components

2 -1/ 2 2
• N 1= -m ( 1+r n  ) , N 2 = ( l + m ) , (6.48)

in which m given by (6.47), is a unit normal ve ctor of it. By (2.6),

(2. 7), the only nonvanishing component of tr action on a curve in X with

normal N is the ~ 3
-component, which is given by

t T 3ç~Np 2W ’(3 + U~
2 )U~~ N~ . (6 . 4 9 )

By (1 .6 ) ,  (3 . 2) and (4. 1), this may be written as

t =  U ~~~~ , p = . (6 .50)
Zp b(p )

The components U , U 
2 

of ~ U are discontinuous across it , bein g

given by (5. 16), (5. 17) and (6. 1) on the side of it associated with

= 1 ,2 . The limiting values of U 1 
, U on the p -side of it can be

expressed entirely in te rms of p 1 , p 2 by substituting for in (5 . 16) ,

(5. 17) from (6.7). Since N1, N 2 are expressed sole ly in te rms of p

by (6.48) ,  (6.47) , the limiting tractions t 1 , t 2 on the two sides of it
can then be fo un d in terms of p 1,p 2 alone by (6.50). 

In the resulting

formulas for t 1 and t2 , p~~, p 2 appear explicitly as well as in the argu-

merits of a and b. It is possible to use the shock condition (6. 10), (6. 11)

to eliminate the explicit appearance of p 1,p 2 . When this is done , one

‘Note that one also require s the fact that a1-a2-b 1+b 2>0 as establishedin the discussion following (6. 46).

I 
-- •~ — ~

- 
•- - -

.
~

I 4.;~•. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~
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f inds that t~~ t2 on , confirming the continuity of traction across it
• and thus establishing claim (vi).

Geometrically, the shocks at and .‘ are the loci of points of

intersection of the circles r(p 
~ 

and r(p 
~ 

as varie s from p 0 to

p 2 fro m +a) to p in acco rdance with the relation p 2~~~2 (p 1) .

These circle s are shown schematically in Fig. 8.

7. The field near the crack-tip .  Discussion
+The local behavior near the crack-tip of the shock a1 and of the

disp lacement and st resses  can be determined from the global solution to the

small-scale nonlinea r crack problem constructed in the preceding section .

We consider f i r s t  the case of a material for which the ultimate shear stress

• in simple shear is positive : Ta) >O . To determine the shape of it near

the ori g in , it is easiest to proceed from the expression ( 6 . 4 7 )  for  the slope

m . Since p 1 — p 0 + and p 2 — + a )  on it as the origin is approached , one

can dete rmine the limiting value of d~ 2 /d~~1 as ~~~—0+ from (6. 47 ) by

using the asymptotic results (6.42) and (4.6), along with (4 .15) ,  (4. 1),

(4 .3 )  and (3. 2). This le ad s to

7
lim —J = 

a) 
, ¶ >0 , (7. 1)

;-.o+~~~i f 2 ~~~~ 
a)

• ~~ 0 0)

where 1~~~ = 7 ( p
0

) , and, by (4.15), (4. 1) and (3. 2), p 0 is the unique number

• in ( 0, 1) such that

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ — •- — 

- 

- 

-
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0)

~ dp 
— 

1 ‘ 7 2 ~~~~

~ 2 p ¶ (p  ) . )
p 0 p r(p ) 0 0

From (7. 1) it follows that it is asymptotically straight  at the origin:

~~ on it as 3~ —0 , ¶ >0 . (7 . 3)2 / 2  2 1

Thus and 1 subtend a limiting an g le 20,~ at the orig in, where

2 2 - 1 / 2tanO T ( r  -1.
0 0 ) 0  0)

To find the limiting value of u(5~1,~~2) as (x 1, x2 ) approache s the

or ig in  from within the domain ~~ 1) ( i . e .  f rom the elli ptic s ide) ,  one uses

( 6 . 1 )  and (5 . 13) with ~~= 1 and lets p 1 
—

~~~~
+ . Making use of (4 . 15), ( 4 . 1 ) ,

(3. 2) and ( 7 . 3 ) , one obtai ns

1im U(~~11~~7)=±~~~ as ~~— 0  , , T > O  , ( 7 . 4 )

where the ambiguous si gn is  chosen to be the si gn of 0 . Note that ( 7 . 4 )

confirms that U is discontinuous at the ori gin .

In order to find the limiting value of U at the orig in fro m the hy-

pe :bolic dom ain ~~2) , it is necessary  f i r s t  to observe that the second of

(6. 5), together with (4. 6), implies that

• 
~~~~~~~~~~~~~~~~~~~~~~~ 

cos~ as f — 0 , 7 > 0  . ( 7 . 5 )

‘One can use (4. 15), (6.6), the second of (4. 1), and (6.20) with p
to show that 1. > 1 .0 0 )

_ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
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Appealing to (6. 1), (5. 13) with o~ = 2 , lettin g F-. 0 and invoking (7. 5),

one is led to

lim u( x 1, x2 )~~~~— s i n 8 , ~80~~
8 �8

~ 
, ¶ > 0  . ( 7 . 6 )

r-’O 0)

A graph of the l imiting value of U vs. 8 , for  ¶~~~>0  , is shown in Fig.  11.

Note that ( 7 . 4) ,  ( 7 . 6 )  togethe r show that U is bo unded near the c r ack - t ip,

as or ig inally requi red .

The corresponding limiting value s of the s t resses  
~~~~ 

can be found

from (1.6), (1. 16), (2. 6), (5. J6)-(5. 18) in an analogous way . The cylindrical

components of shearing stress ¶
rz

73l COS 0 +T 32 S1fl 8 and

- T Sin B + ¶ C05 B t u rn  out to satisfy
~z 3 1 32

[0 

, - <
~~~

<
~~~~

~j
T
rz1 ~ OD

>° ( 7 • 7 )
l

±70cos B , 8~~< ~e ! ~

17 , O~~~ l e k e
0) 0

lim ¶ =J 7 >0 . ( 7 . 8 )
— 8 z 1  0)
r-’ O

(~r 0~s i n B I  ,

The ambiguous sign in (7 .7 )  is opposite to the sign of 8. Graphs of these

limiting stresses (10)>0) are g
iven in Fig. 12, in which e0 was chosen

- • to be greater than ~ /4.

more refined calculation shows that 
~~~~~~~~ 

for -8~~< $ < 8~~.

_

,• 
7. ~~~~~~ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _
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The axial stress ¶
33 is given asymptot ically by

1~cos e 
~I 

•

~~ 

‘ ~~0 0

7 as F— 0 , ¶ >0 . ( 7 . 9 )
33 0)

The limitin g behavior as F-’O of U T
rz ~~~ 

and ¶
33 is quali-

tat ively similar to the small-i behavior of these quanti t ies as dete rmined

in [1]  for the small-scale nonlinear crack problem in the case of an in-

compressible mate r ia l  gove rned by the shear s t ress  resp onse (1. 13). For

the disp lacement and the shear ing  s t re~~ses , this s imi la r i ty  can be seen by

comparing Figs.  11 , 12 of the present  pape r with F i g s .  7 , 8, 9 of [ 1 ] .

A part  from the presence  of the discont inui ty  in s t r esses  associated

with the shock , the above limiting value s of d i sp lacement and s t r e s s  also

bear a qualitative resemblance to corresponding resul ts  obtained in [2]  for

the “softest” of the elli ptic power-law mater ia l s  (the case n 1/2 in ( 1 . 1 1 ) ) .

It is possible to confirm directly the continuity of disp lacement and

tract ion across near  the ori gin by making use of (7. 3), (7 .4 )  and (7. 6)-

(7. 8).

For the case of a material with r~~ = 0 , simila r — but more in-

volved — arguments  which we shall not give here le ad to the appropriate

crack-t ip approximations. In thi s instance , the shocks it and 1 are

tan gen t to the 3~1- axi s at the origin acco rding to the formula

as ~ -O+ on ¶0)0 . ( 7 .  10)

• 
-~~• • • • .

• I • 

~~~~ ‘ /
~ii..L - - . -~~~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Here 
~~ 

(p~~ ) , with p 0 dete rmined by (7. 2) , and h , e are the mater ia l

constants  gove rnin g the shear s tress response at large shear (see (1. 16)) ;

recall that h > 0  ,

• The limiting value of the displacement U(~~1,~~2 ) at the or ig in f rom

within ~~~1) ( i . e .  f rom the elli ptic side) is again given by (7 .4) ,  except

that now ~ 0 , since it and I are tangent  to the ~ 1-axis at the o r i g i n .

On the othe r hand , if the or ig in  is approached along a curve which lie s in

the hyperboli c domain ~~ 2) , (7. 6) must be rep laced by

U € 
/ 2 / ~~Y ‘~~~l 1 /  ‘2  - €  cos B + R ( B ) ~ 

sin C
C [ c o s 0 i - R ( B ) ] ~~’2

as (~~,~~~,) - . (0 , 0) ins ide  , r~~~~~ = 0  , (7.11)

where

r 2 ~1/2
I ~~2~~~~~~~~ ) 2 , 4 !1 €

2 COS 
~~~~~ 2 • • ( i . 12)

- 
C C 

-

With refe rence to (7. 12), one mus t  note that i~(6 )  is real  for

I c o s e I �2 ( 1  ~ e ) h / 2 / (2~~€ )  , and only small values of IB ! are relevant  in

(7 .11) ,  again because 1+ and 1 are tangent to the ~ 1-axis  at the or i gin.

It can be shown from (7. 10), (7. 11) that U remains bounded as the

origin is approached from the hype rbolic dom ain alon g any curve that re-

main s between it and d . Since according to (7.4) such boundedness

clea r ly prevails for any approach to the ori g in f rom the ell iptic side , one

concludes once again that U is bounded near  the c r ack - t ip.

The choice Ta)=0 , h = ~ , 1/ 2 in (1. 16) furnishe s precisel y the

— 

~
• ,
‘

~~~~
- ‘#:- -I,

• 
~~~~~~~~

_  - -- ~--~~~



-53-

l a r g e - k  behavior of the material  descr ibed  by ( 1. 13) and treated in [ i ll .
Although this mater ia l  is not included in the class of materials studied in

the present paper , princi pally because of the lack of smoothness at k = 1

in its shear—st ress  response curve (Fig. 2) ,  it is nevertheless true that

setting C 1/2 , h =~..i in (7. 10), (7 .11) ,  (7. 12) reduce s (7. 10), (7. 11)

precisely to the corresponding resul ts  in [ 1 ].  1 This reflects the fact

that c rack- t ip behavior within the hyperbol ic  region is determined entire ly

by the l a rge -k  behavior of the she ar—stress  response curve , It is also true

that , if one uses 7 ( p )  as given by (1. 13) in (7. 2) to dete rmine p 0 , se ts

0
= T ~~~0

) 
~~~~~ 

, and uses this in (7 .4) ,  the result  coincides with the limit-

ing value of U from the elliptic side at the ori g in as determined in [ i] .

Crack- t i p appro ximat ions for the s t resses  in the case 7a) = 0  re-

main the same as for the case ¶ >0 insofar as l imit ing value s from thea)

elli ptic side are conce rned. A pproximations appropria te  to an approach to

the c rack- t ip from the hyperbol ic  domain for  0 have been found but

will not be given here.  They, too , reduce to cor respond ing  resul ts  in [ ii

when c = l / 2 , h = ~~ .

As a point on the shock approache s the cusp, the shock “weakens ”

in the sense that discont inui t ie s in the disp lacement gradients  tend to ze ro .

At the cusp itself, one can dete rmine the field quant i t ies  in terms of

the value of p at which c(p ) in (4. 21) vanishes. A typical fo rmula

is that for the displacement at the cusp:

‘See (4.1), (4.2) and (4.9) oft,].

-
,

/ ~~~~~~~~~~
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— 1 2 r d (’r vi 
-1/2 1u ~~~~1I  — p  ¶ (p ) —

~ 
— - , (7. 13)cusp c c • dp \~ - -~ — 

)P

The largest  re sultant shearing stress (7 3 T 3
~~) 1/2 occurs at

points of the circle F( 1) and has the value 1’m (see (1. 18)).  The axial

stress becomes infinite as the crack-tip is approache d from within

the hyperbolic domain .

The small-scale nonlinear crack problem appears to be substantially

more complicated if the one-cusp condition (4. 24) fails to hold . If the re is

more than one cusp on e ach of the branche s of the envelope ~~, it can be

seen that there must be at least three on each branch. The situation

sketched s chematically in Fig. 13 would seem to be a possible one as regards

an envelope ~ with three cusps per branch . Among the possibi l i t ie s sug-

gested by Fi g. 13 is one in which the shocks it and 1 are forked , as

indicated by the dashed l ines.

In [ 3 ] ,  [4]  it was proposed that e las tosta t ic  shocks should be s ubject

to a certain “d iss ipation condition ” analogous to the requi rement of increas-

ing par t ic le  entropy across a gas-dynamic shock. For the shocks constructed

in [ i i  in connection with the s-mall-scale nonlinear crack proble m for the

special material  (1 . 13), it was verif ied that this diss i pation condi t ion was

fulfilled when the amount of shear prescribe d at infinity is a quasi-statically

increasing function of time , corresponding to loading (as distinguished from

unloading) . We have not investigated the corresponding issue in the more

general setting of the present paper.

1Recall that (1. 15) implie s d /dp (~ ( p ) / p ) < 0

_ _  /
_ _ _ _ _ _ _ _ _ _
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This paper reconsiders the problem of determining the elastostatic field near
the tip of a crack in an all-around inf inite body deformed by a “Mode III”
loading at infinity to a state of anti-plane shear. The problem is treated for
a class of incompressible, homogeneous, isotropic elastic materials whose
cons titutive laws perm it a loss of ellipti city in the governing displacement
equation of equilibrium at su .fflciently severe shearing strains. The analysis
represents a generalization of that reported in an earlie r stud y and , as before
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20. (continued)
is carried out for the “sm all-scale nonlinear crack problem ” in whi ch a cracll
of fin ite length is replaced by a semi-infinite one, and the nonlinear field far
from the crack-tip is matched to the near field predicted by the linearized
theory . The methods employed in the present pape r are necessari ly largely
qual i t ative , since they apply to all materials in the class considered . The
princi pal feature of the result ing elastic field is the presence of two sym-
met r ical ly located cur ves issuing from the crack-ti p and bearing discont inui t i  a
in displacement gradient and stress.
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